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University of California, Berkeley
Physics H7C Fall 1999 (Strovink)

PROBLEM SET 1

1. Two supernovæ are observed on earth in the
direction of the north star, separated by 10 years.
From the theory of supernovæ these are known to
have identical (“standard candle”) light output,
yet the first is observed to have four times the
light intensity of the second because it is closer.
(a.)
An astronomer theorizes that the two stars were
at rest with respect to the earth, and that the
first supernova triggered the second. What is
the maximum distance between the earth and
the first supernova under this hypothesis?
(b.)
A physicist theorizes that the two stars were
traveling with the same (unspecified) velocity
away from the earth, and that, in their common
rest frame, the two supernovæ occurred at the
same proper time. What is the minimum dis-
tance between the earth and the first supernova
under this hypothesis?

2. Inertial reference frames S ′ and S coincide
at t′ = t = 0. You may ignore the z dimension,
so that a point in spacetime is determined by
only three quantities r ≡ (ct, x, y). The Lorentz
transformation between S and S ′ is given by




ct′

x′

y′


 = L




ct
x
y


 ,

where L is a 3×3 matrix.
(a.)
Assume for this part that S ′ moves with velocity

V = βcx̂

with respect to S. Using your knowledge of
Lorentz transformations (no derivation neces-
sary), write L for this case.
(b.)
Assume for this part that S ′ moves with velocity

V = βc
x̂+ ŷ√
2

with respect to S. Find L for this case. (Hint.
Rotate to a system in which V is along the x̂
axis, transform using your answer for part (a.),
and then rotate back. Check that your result is
symmetric under interchange of x and y, as is V,
and that it reduces to the unit matrix as β → 0.)

3. Work out the Lorentz transformation ma-
trix L for the general case in which β of frame
S ′ is directed along an arbitrary unit vector
n̂ = (nx, ny, nz) as seen in frame S, e.g.

r′ = Lr, L = ?

4. In a straight channel oriented along the ẑ
axis there are two opposing beams:

• a beam of positrons (charge +e) with veloc-
ity +ẑβc.

• a beam of electrons (charge −e) with veloc-
ity −ẑβc.

Each beam is confined to a small cylindrical vol-
ume of cross sectional area A centered on the
ẑ axis. Within that volume, there is a uni-
form number density = n positrons/m3 and n
electrons/m3.
(a.)
In terms of n, A, e, and β, calculate the total
current I in the channel due to the sum of both
beams (note I 	= 0).
(b.)
Use Ampère’s Law to calculate the azimuthal
magnetic field Bφ outside the channel a distance
r from the ẑ axis.

Consider now a Lorentz frame S ′ travelling in
the ẑ direction with velocity βc relative to the
lab frame described above. (This β is the same
β as above.)
(c.)
As seen in S ′, calculate the number density
n′

+ of positrons within the cylindrical volume.
(You may use elementary arguments involving
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space contraction, or you may use the fact that
(cρ, j) is a 4-vector, where ρ is the charge den-
sity (Coul/m3) and j is the current density
(amps/m2).)
(d.)
As seen in S ′, calculate the number density n′

−
of electrons within the cylindrical volume.
(e.)
Calculate the radial electric field E′

r seen in S ′.
Do this both

• by using the results of (c.) and (d.) plus
Gauss’s law, and

• by using the results of (b.) plus the rules for
relativistic E and B field transformations.

5. (Taylor and Wheeler problem 51)
The clock paradox, version 3.
Can one go to a point 7000 light years away –
and return – without aging more than 40 years?
“Yes” is the conclusion reached by an engineer
on the staff of a large aviation firm in a recent
report. In his analysis the traveler experiences a
constant “1-g” acceleration (or deceleration, de-
pending on the stage reached in her journey).
Assuming this limitation, is the engineer right in
his conclusion? (For simplicity, limit attention
to the first phase of the motion, during which
the astronaut accelerates for 10 years – then
double the distance covered in that time to find
how far it is to the most remote point reached
in the course of the journey.)
(a.)
The acceleration is not g = 9.8 meters per sec-
ond per second relative to the laboratory frame.
If it were, how many times faster than light
would the spaceship be moving at the end of
ten years (1 year = 31.6 × 106 seconds)? If the
acceleration is not specified with respect to the
laboratory, then with respect to what is it spec-
ified? Discussion: Look at the bathroom scales
on which one is standing! The rocket jet is al-
ways turned up to the point where these scales
read one’s correct weight. Under these condi-
tions one is being accelerated at 9.8 meters per
second per second with respect to a spaceship
that (1) instantaneously happens to be riding
alongside with identical velocity, but (2) is not
being accelerated, and, therefore (3) provides

the (momentary) inertial frame of reference rel-
ative to which the acceleration is g.
(b.)
How much velocity does the spaceship have after
a given time? This is the moment to object to the
question and to rephrase it. Velocity βc is not
the simple quantity to analyze. The simple quan-
tity is the boost parameter η. This parameter is
simple because it is additive in this sense: Let the
boost parameter of the spaceship with respect to
the imaginary instantaneously comoving inertial
frame change from 0 to dη in an astronaut time
dτ . Then the boost parameter of the spaceship
with respect to the laboratory frame changes in
the same astronaut time from its initial value η
to the subsequent value η+dη. Now relate dη to
the acceleration g in the instantaneously comov-
ing inertial frame. In this frame g dτ = c dβ =
c d(tanh η) = c tanh (dη) ≈ c dη so that

c dη = g dτ

Each lapse of time dτ on the astronaut’s watch is
accompanied by an additional increase dη = g

c dτ
in the boost parameter of the spaceship. In
the laboratory frame the total boost parame-
ter of the spaceship is simply the sum of these
additional increases in the boost parameter. As-
sume that the spaceship starts from rest. Then
its boost parameter will increase linearly with
astronaut time according to the equation

cη = gτ

This expression gives the boost parameter η of
the spaceship in the laboratory frame at any
time τ in the astronaut’s frame.
(c.)
What laboratory distance x does the spaceship
cover in a given astronaut time τ? At any
instant the velocity of the spaceship in the lab-
oratory frame is related to its boost parameter
by the equation dx/dt = c tanh η so that the
distance dx covered in laboratory time dt is

dx = c tanh η dt

Remember that the time between ticks of the
astronaut’s watch dτ appear to have the larger
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value dt in the laboratory frame (time dilation)
given by the expression

dt = cosh η dτ

Hence the laboratory distance dx covered in as-
tronaut time dτ is

dx = c tanh η cosh η dτ = c sinh η dτ

Use the expression cη = gτ from part b to obtain

dx = c sinh
(gτ

c

)
dτ

Sum (integrate) all these small displacements dx
from zero astronaut time to a final astronaut
time to find

x =
c2

g

[
cosh

(gτ

c

)
− 1

]

This expression gives the laboratory distance x
covered by the spaceship at any time τ in the
astronaut’s frame.
(d.)
Plugging in the appropriate numerical values,
determine whether the engineer is correct in his
conclusion reported at the beginning of this ex-
ercise.

6. Electrons (mc2 = 0.5 × 106 eV) are acceler-
ated over a distance of 3.2 km from rest to a
total energy of 5×1010 eV at SLAC (Stanford).
(a.)
To what boost η are the electrons ultimately
brought?
(b.)
Assuming that the electrons are subjected to a
uniform acceleration as observed in their comov-
ing inertial frame, how many g’s of acceleration
do they feel?
(c.)
As observed in the lab, for what time interval is
each electron in flight? What is the correspond-
ing proper time interval? Evaluate the ratio of
the two intervals (a sort of average γ factor).

7. (Taylor and Wheeler problem 75)
Doppler equations.
A photon moves in the xy laboratory plane in
a direction that makes an angle φ with the x
axis, so that its components of momentum are
px = p cosφ, py = p sinφ, and pz = 0.
(a.)
Use the Lorentz transformation equations for
the momentum-energy 4-vector and the relation
E2/c2 − p2 = 0 for a photon to show that, in the
rocket frame S ′ (moving with velocity βrc along
the x, x′ direction, and coinciding with the lab-
oratory frame at t = t′ = 0), the photon has an
energy E′ given by the equation

E′ = E cosh ηr(1− βr cosφ)

and moves in a direction that makes an angle φ′

with the x′ axis given by the equation

cosφ′ =
cosφ − βr

1− βr cosφ

(b.)
Derive the inverse equations for E and cosφ as
functions of E′, cosφ′, and βr.
(c.)
If the frequency of light in the laboratory is ν,
what is the frequency ν′ of light in the rocket
frame? This difference in frequency due to rel-
ative motion is called the relativistic Doppler
shift. Do these equations enable one to tell in
what frame the source of the photons is at rest?
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8. Consider the following situation. A star is
known, by means of external data, to be located
instantaneously a distance D from an observer
on earth. The external data do not tell us the
rate of change of D with time.

In her measurements, the observer corrects for
aberration caused by the local velocity of the
earth’s surface, due both to its daily rotation
and its yearly orbit. Therefore we do not need
to take into account these boring local phenom-
ena in what follows.

After making these corrections, the observer sees
that the star is undergoing angular motion dψ/dt
across the sky, such that D dψ/dt = c, where c
is the speed of light.

Finally, the observer measures the wavelength
spectrum of light from this star, and finds its
features not to be redshifted or blueshifted at all
– they are exactly where they would be if the
star were perfectly at rest with respect to the
observer.

Is it possible that this situation is physically rea-
sonable? If so, what might be the true motion
of the star with respect to the observer? If not,
why not?


